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The statistical properties of fully developed planar turbulent Couette–Poiseuille flow
result from the simultaneous imposition of a mean wall shear force together with
a mean pressure force. Despite the fact that pure Poiseuille flow and pure Couette
flow are the two extremes of Couette–Poiseuille flow, the statistical properties of the
latter have proved resistant to scaling approaches that coherently extend traditional
wall flow theory. For this reason, Couette–Poiseuille flow constitutes an interesting
test case by which to explore the efficacy of alternative theoretical approaches, along
with their physical/mathematical ramifications. Within this context, the present effort
extends the recently developed scaling framework of Wei et al. (2005a) and associated
multiscaling ideas of Fife et al. (2005a, b) to fully developed planar turbulent Couette–
Poiseuille flow. Like Poiseuille flow, and contrary to the structure hypothesized by the
traditional inner/outer/overlap-based framework, with increasing distance from the
wall, the present flow is shown in some cases to undergo a balance breaking and balance
exchange process as the mean dynamics transition from a layer characterized by a
balance between the Reynolds stress gradient and viscous stress gradient, to a layer
characterized by a balance between the Reynolds stress gradient (more precisely, the
sum of Reynolds and viscous stress gradients) and mean pressure gradient. Multiscale
analyses of the mean momentum equation are used to predict (in order of magnitude)
the wall-normal positions of the maxima of the Reynolds shear stress, as well as
to provide an explicit mesoscaling for the profiles near those positions. The analysis
reveals a close relationship between the mean flow structure of Couette–Poiseuille flow
and two internal scale hierarchies admitted by the mean flow equations. The averaged
profiles of interest have, at essentially each point in the channel, a characteristic length
that increases as a well-defined ‘outer region’ is approached from either the bottom
or the top of the channel. The continuous deformation of this scaling structure as the
relevant parameter varies from the Poiseuille case to the Couette case is studied and
clarified.

1. Introduction
Purely shear-driven flow in a plane channel becomes turbulent when the applied

steady wall motion is sufficiently large. Similarly, purely pressure-driven flow in the
same duct will become turbulent when the applied pressure gradient is large enough.
Broadly speaking, a primary requirement in either case is that the applied driving
mechanism impart momentum sufficient to sustain the mechanisms of wall-bounded
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turbulence. The process by which momentum is applied, however, differs between
these two flows. In Couette flow, the momentum is input locally (i.e. at the wall),
and the internal dynamics subsequently act to transmit it throughout the flow.
Conversely, in Poiseuille flow momentum is imparted through the action of a uniform
mean differential pressure force. In either case, however, the driving mechanisms, in
conjunction with no-slip walls and the intrinsic turbulent dynamics, serve to create
large near-wall curvature in the mean velocity profile in concert with large gradients
of the Reynolds stress. These constitute common attributes that are central to the
generation and maintenance of turbulence in both of these flows. A broad objective
of the analysis provided herein is to further elucidate the connections between the
driving mechanisms of these flows and the scaling behaviours of their statistical
structure.

Consideration of the differences and commonalities between Couette and Poiseuille
flow naturally leads to enquiries regarding the scaling behaviours and mathematical
structure in the combined Couette–Poiseuille (C-P) scenario. There have been a
number of efforts along these lines, including El Telbany & Reynolds (1980),
Schlichting & Gersten (2000), Nakabayashi et al. (2004). Most notable among these
are treatments using traditional concepts of inner- and outer-scaling regions, often
along with inner/outer overlap ideas having their beginnings in the work of Izakson
(1937) and Millikan (1939). Any theoretical study of these turbulence issues based
on exact models such as the Navier–Stokes equations will necessarily be incomplete
because of analytical difficulties with those models. Therefore, among such incomplete
studies, it is important, if possible, to examine a variety of alternative approaches.
Insight is promoted by diverse viewpoints.

The viewpoint in this paper is that understanding the local scaling structure of the
mean velocity and Reynolds stress profiles is a primary objective. In fact it leads to
much further information about those profiles, as well as a few conceptual differences
from previous papers by other authors.

For example, in the case of Couette flow the outer scale is shown (as in Fife et al.
2005b) to arise as the culminating scale of a hierarchy that is a direct consequence of
the dynamical balance everywhere between the viscous and Reynolds stress gradients.
Physically, this origin for the outer length in Couette flow is distinctly different from
the classical notion that it is associated with a turbulent core region within which the
dynamical effects of viscosity are small compared with turbulent inertia. On the other
hand, in Poiseuille flow there is the empirical fact that the extent of the traditionally
defined logarithmic law region covers three subdomains whose underlying mean
dynamics are distinct (Wei et al. 2005a) – adding complexity to the notion that this
layer (as traditionally defined) constitutes an inertial sublayer in physical space (e.g.
Tennekes & Lumley 1972).

Relevant, however, to the theoretical framework employed herein, some previous
approaches/observations are particularly noteworthy. These relate to the combined
use of shear stress information from both walls to scale data, and, more generally,
the importance of the stress gradients in describing dynamical structure (El Telbany
& Reynolds 1980, 1981; Thurlow & Klewicki 2000; Nakabayashi et al. 2004).

The present effort aims to provide firm evidence that a unified theoretical framework
for C-P flow not only exists, but is a rational extension of a theoretical framework
that successfully describes the scaling behaviours of Couette and Poiseuille flows
individually; see Wei et al. (2005a), Fife et al. (2005a, b), Klewicki et al. (2004); Wei
et al. (2005b). A significant feature of the present treatment is that it is entirely
independent of the traditional inner/outer/overlap framework.
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The mathematical framework is outlined in § § 2, 3, and 4, with an explanation
of the mesolayer analysis, along with its implications on the properties of the mean
velocity and Reynolds stress profiles, given in § 5. Section 6 deals with continua of
‘scaling patches’, as introduced in Fife et al. (2005a, b). A scaling patch is defined
to be a region in the flow field specified by an interval of distances from the wall,
together with a scaling or non-dimensionalization of the variables which is natural
for that region. Here natural means, on the one hand, that data utilizing a variety of
different values of the appropriate Reynolds number appear independent of Reynolds
number when plotted in the form of normalized variables. (The traditional inner and
outer normalizations satisfy this criterion near the wall and near the centreline.)
Secondly, the resulting plots should not collapse to constants anywhere in the region
being considered; i.e. the scaled dependent variables (or at least one of them) should
depend nontrivially on the scaled distance from the wall. If this dependence collapses
to a constant, the scaled distance under consideration is too large and is not the
natural distance scaling for that part of the patch. In this case either the scaling in
the patch should be changed or the patch region should be reduced. For example,
if the inner scaling is used in the meso-region, as is often advocated, it leads to
the wrong characteristic length there. Consequently, it does not produce a scaling
patch, and does not in itself convey detailed information about the scaling structure
of the profiles that scaling patches provide. In previous publications, scaling patches
have sometimes been called ‘layers’, but in the present paper that term is reserved
for a different related concept, the ‘physical layers’ introduced in § 2. The analysis
given here applies only when statistically stationary turbulence occupies the entire
channel.

To reiterate, under the conviction that knowledge of the local scaling properties
of the mean momentum and Reynolds stress profiles are basic to understanding
wall-bounded turbulent flow, this paper seeks to obtain this knowledge in the case
of Couette–Poiseuille flow by finding all possible scaling patches. The procedure is to
use assumed criteria to identify such patches at specific locations.

Using this procedure, it is shown in § 6 that continua (pairs of such continua,
generally) of scaling patches exist for C-P flow, as they do for pure Couette and
Poiseuille flows, and that certain pivotal locations in the channel are identified as
the loci of outer regions, where the characteristic lengths for the solution profiles are
maximal.

The qualitative nature of the transition, via C-P flow and parameter variation, from
Couette to Poiseuille flow is also taken up in § 7, and a discussion/review follows in
§ 8.

2. Mean momentum balance framework for Couette and Poiseuille flows,
and its extension to C-P flows

This section reviews the application of the mean momentum balance-based
framework to planar Poiseuille and Couette flow, and proposes its extension to
combined C-P flow. Only a brief outline of the essential features are presented here;
the reader is referred to the studies of Wei et al. (2005a) and Fife et al. (2005a, b)
for a more detailed analysis of the pure Poiseuille and Couette flows, as well as of
the rigorous transformation that connects them. The same theoretical framework is
employed in both of the ‘pure’ cases, and it will be shown to be applicable to the
combined C-P flow as well.
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Figure 1. Sketch of the physical layer structure of turbulent Poiseuille and Couette flow. For
Poiseuille flow layer I is the inner viscous stress gradient/pressure gradient balance layer.
Layer II is the viscous stress/Reynolds stress gradient balance layer. Layer III is the mesolayer
in which all terms are important, and in layer IV the Reynolds stress gradient and pressure
gradient balance. For Couette flow the entire flow is characterized by an exact balance between
the Reynolds stress and viscous stress gradients, so that only layer II appears.

2.1. Force balance structure

For fully developed axial flow between infinite parallel plates spaced a distance 2δ

apart (figure 2), the x-component of the Reynolds-averaged Navier–Stokes equation
reduces to

0 = − 1

ρ

dP

dx
+ ν

d2U

dy2
+

dT

dy
, (2.1)

where U is the mean axial velocity, P is the mean pressure (its x-derivative is constant)
and T = −〈uv〉 is the Reynolds shear stress, u and v being the components of the
velocity fluctuation. Equation (2.1) applies equally to the Poiseuille, Couette, and C-P
flow, although in Couette flow the pressure gradient term is identically zero.

Under the present framework, the dynamically relevant principal layer structure
for the flow is revealed by considering the relative magnitudes of the terms in the
mean momentum balance. This may be accomplished by examining the ratio of the
second and third terms in (2.1). In this way, figure 1 shows the layer structure for
these flows in the pure Couette and Poiseuille cases (since there is symmetry with
respect to the centreline, figure 1 covers only half of the channel). As discussed by
Wei et al. (2005a), to leading order the mean dynamical structure of Poiseuille flow
consists of a pressure gradient/viscous stress gradient balance layer (I), a Reynolds
stress gradient/viscous stress gradient balance layer (II), a mesolayer in which all
three terms are of nominally the same order of magnitude (III), and an outer layer
in which the pressure and Reynolds stress gradients balance (IV). For Couette flow
the mean dynamical structure is much simpler, consisting entirely of layer II, so that
the ratio expressed in figure 1 is −1 everywhere.
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Figure 2. Schematic depictions of the mean velocity distributions in C-P flow for fixed upper
wall velocity Uw and different degrees of asymmetry. Profile A is a typical Poiseuille-type flow.
Profile B represents an intermediate type, and Profile C is a typical Couette-type flow.

For either a pure Poiseuille flow or a combined C-P flow, a global force balance
between the pressure gradient and the wall friction, which is a necessary condition
for existence of a steady flow, can be found (e.g. Panton 1984) by integrating (2.1)
over the channel:

−2
δ

ρ

dP

dx
+

[
ν
dU

dy

]y=2δ

y=0

= 0; (2.2)

here the brackets denote the difference between the upper and lower values.
With no loss of generality, it will always be assumed that:

(a) the shear stress at the upper wall, in magnitude, is no greater than that at the
lower wall, and

(b) the lower wall shear stress is positive.
Thus ∣∣∣∣dU

dy y=2δ

∣∣∣∣ �
dU

dy

∣∣∣∣
y=0

. (2.3)

If, in fact, (a) is violated, then one simply interchanges the upper and lower walls
to obtain an equivalent problem in which (a) holds. Similarly if (b) is violated, one
reverses the signs of all velocities. To put (a) in other words, the convention will be
always to position the origin of the y coordinate at the wall with the higher magnitude
of shear stress.

Sketches of possible C-P mean profile types are shown in figure 2. As indicated, the
possibilities are divided roughly into three types: Poiseuille-type flow, intermediate
flow and Couette-type flow, indicated by curves A, B and C, respectively. They
correspond to the cases when the upper wall shear stress is (relative to the lower one)
positive and significant, small, and negative and significant. An elaboration of this
classification, as well as a study of the features of the transition between Couette and
Poiseuille flows as a parameter is varied, will be given in § 7.

2.2. Generic elements of the multiscale analysis

One primary component of the multiscale analysis is to seek normalized forms of
the equation of motion that reflect the appropriate dominance of terms as revealed
through an examination of momentum balance data. The notion of dominance will
be under the condition that a basic singular perturbation parameter ε be small:
ε � 1. It is defined by ε2 ∼ 1/Reτ , where Reτ is a wall Reynolds number based on
the lower wall. There is also such a Reynolds number based on the upper wall, but
the arrangement of the walls will always be taken so that the number attached to the
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Figure 3. (a) W = dT +/dy+; (b) ratios S of the viscous stress gradient to Reynolds stress
gradient in C-P flow for various values of τ+

u , a parameter on the continuum between
Couette (τ+

u = 1) and Poiseuille (τ+
u = −1) flow. A transition from Poiseuille to Couette

is represented by the passage from top to bottom. Note that while the range of wall
motions represented is relatively small, the limiting cases of pure Poiseuille and Couette flow
described relative to figure 1 have been previously confirmed by Wei et al. (2005a) and Fife
et al. (2005b) respectively. Note that the same ratio S is plotted in figures 1 and 3, but in
figure 1, only half of the channel is covered, the whole channel being shown in the present figure.
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lower wall is the larger of the two; all the analysis will be with respect to the larger
Reynolds number.

The inner-normalization, producing U+ and T + for example, will utilize the friction
velocity at the lower wall. The goal then is to determine the normalization such that
the nominal orders of magnitude of the terms as ε → 0 matches their actual orders of
magnitude in some subdomain. In this way the proper equation for each subdomain
(scaling patch; Fife et al. 2005a) is, to leading order, parameter-free. This procedure
generally succeeds for all the scaling patches that have been found. For Poiseuille
flow it requires a rescaling for layer III, for example, that generates a parameter-free
normalized form of (2.1) while retaining all three terms (Wei et al. 2005a). The inner-
scaling, for which the law of the wall holds, is valid in layer I and part of layer II;
see a more complete discussion of scaling in these layers in the Appendix.

An analogous phenomenon in fact occurs for a whole continuum of scalings, as
shown in Fife et al. (2005a, b). In the case of layer III, from this rescaling a new
fundamental length scale (the mesoscale) is identified (having the same theoretical
justification as the traditional inner and outer scales). The scaling patches, including
the mesolayer, were revealed in Wei et al. (2005a) to be connected through a balance
breaking and balance exchange of terms.

In addition to ε, there is only one other parameter that determines the flow
characteristics. It is the ratio τ+

u (3.8) of the friction forces, per unit length, exerted on
the upper and lower walls by the flow. It is limited to the range |τ+

u | � 1, and measures
the relative magnitude of the Poiseuille vs Couette effect. It does not introduce any
singular perturbation complications.

Analysis of Couette flow by Fife et al. (2005b) reveals that, generally, within
any stress gradient balance layer the mean equation of motion admits a hierarchy
(continuum) of scaling patches. The transformation (adjusted Reynolds stress
function) employed to accomplish this is an extension of that which renders the
governing equation for Couette flow to be identical to that for Poiseuille flow (Fife
et al. 2005a, b). This identity allows the hierarchy results, originally obtained for
Couette flow, to be transferred to Poiseuille flow as well.

As intuitively anticipated, it is shown herein that a similar layer hierarchy underlies
the structure of C-P flow. Overall, the present approach places C-P flow in a context
that can be rationally connected to the mathematical and physical structures of
Couette and Poiseuille flow. Thus, among many other things, the self-consistent scaling
behaviour of the Reynolds shear stress and mean velocity are made apparent (§ 5.3).

2.3. Principal layers for the combined Couette–Poiseuille problem

As for the pure Poiseuille case, the mean momentum equation for Couette–Poiseuille
flow is given by (2.1). As before, it is useful to examine the stress gradient ratios. Let

S = ratio of the viscous stress gradient to the Reynolds stress gradient.

Figure 3(a) shows S for a range of five C-P flow conditions. (The graphs located
second from the bottom in that figure are not based on actual data, which are
unavailable; rather they are qualitative depictions of surmised trends.) The principal

The pure Poiseuille flow data (τ+
u = −1) are from the DNS of Iwamoto, Suzuki & Kasagi

(2002). The Couette–Poiseuille flow data (τ+
u = −0.285, −0.013) are from the DNS of Kuroda,

Kasagi & Hirata (1994). The pure Couette flow data (τ+
u = 1) are from DNS of Shingai,

Kawamura & Matsuo (2000). Since no DNS data are available for the Couette-type flow
shown second from the bottom, a heuristic sketch is provided showing the expected trend (see
also § 7.3).
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layers are characterized by S being approximately −1, 0, or being unbounded, so
that two of the three forces are dominant. It will be shown that the physical layer
structure, as well as the scaling structure, of C-P flow are closely related to the
function W on figure 3(b). That function is the inner-scaled Reynolds stress gradient.
This aspect will be explored in some depth in § 6 as well as § 7. In particular, pure
Couette flow contains one internal zero in d2U+/dy+2, together with one peak and
one valley in dT +/dy+ ≡ W , while pure Poiseuille flow contains one minimum in
d2U+/dy+2 and two peaks in W . Thus, in the transition from a Couette-dominated
to a Poiseuille-dominated flow, a valley in the Reynolds stress gradient W changes
into a second peak.

The peculiar features of the graph of S in the case second from the bottom of that
figure are discussed in § 7.3.

Before ascribing physical or mathematical significance to the behaviours reflected
in figure 3, it is useful to identify a particularly pertinent and nonintuitive trend
associated with variations in τ+

u (the aforesaid ratio of tangential wall forces).
Specifically as τ+

u varies from −1 (pure Poiseuille flow) toward τ+
u =1 (pure Couette

flow), the inertially dominated region where S ≈ 0 initially grows until it encompasses
almost the entire upper half of the channel. It is known, however, that that entire
mean flow must eventually resemble its limiting stress gradient balance layer structure.
Thus, with further increases in the Couette component (not shown) the inertial region
must eventually diminish. A description of the route by which this occurs is a primary
objective of this paper (see especially § 7.3).

As was noted, for any given parameter values, C-P flow is established through the
combination of the two distinctly different driving mechanisms. In the pure Couette
limit, that mechanism acting alone promotes the establishment of a layer II (stress
gradient balance layer) structure across virtually the entire flow, while the Poiseuille
mechanism seeks to establish the four-layer structure depicted in figure 1. Thus, as a
pressure gradient is increasingly imposed on the pure Couette condition, it is rational
to anticipate the eventual emergence of a centrally positioned inertial subdomain
(IV). As indicated in figure 3, however, the transitions between the limiting states are
not attained by such intuitively obvious routes.

It is shown in § 7.2 that the core region in the various right-hand parts of figure 3,
where (except for the bottom one) the ratio S is near 0, should be considered the
amalgam of two core regions, associated with two different hierarchies, on the left
and right.

3. The inner-normalized momentum balance equation
The derivation of the inner formulation of (2.1) is now described.

3.1. Choosing the parameters

In either pure Poiseuille or Couette flow, global Reynolds numbers could be defined
using the centreline velocity (or wall velocity for Couette flow) or bulk mean velocity.
In scaling analyses of either of these flows, however, the Reynolds number is almost
exclusively defined using the friction velocity; i.e. in the case of pure Couette or pure
Poiseuille flow, Reτ = uτδ/ν, with uτ given by (3.1). Relative to the driving mechanisms
discussed in § 1, this would seem to have the strongest physical justification. That is,
in Couette flow the wall motion imposes a shear at the wall, while in Poiseuille flow
the wall shear stress is directly proportional to the applied mean pressure gradient.
Under C-P flow also it is rational to anticipate that these physical influences should
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still be reflected via the wall shear stress behaviours. (It is relevant to note that El
Telbany & Reynolds (1981) suggested an effective friction velocity that combines the
shear stress information from the two walls, i.e. ue = (uτ1 + uτ2)/2.)

Given these considerations, the choice of Reynolds number in this paper is not
based on, say, the bulk mean velocity (e.g. El Telbany & Reynolds 1980), but rather
on the greater of the two friction velocities. The other relevant parameter τ+

u (see
(3.8)) can be thought of as measuring the degree to which the profile symmetries
inherent to either Couette or Poiseuille flow are disrupted. In dimensionless form, the
solution of the mean momentum equation depends on these two parameters Reτ , τ+

u

alone.

3.2. The inner equations

The friction velocity is therefore defined by

u2
τ = ν

dU

dy

∣∣∣∣
y=0

, (3.1)

and is used to scale all velocities: U = uτU
+, T = u2

τ T
+. The inner-normalized

wall-normal coordinate is

y+ =
uτ

ν
y. (3.2)

Non-dimensionalizing (2.1) and (2.2) in this way provides

− 1

ρ

dP

dx

ν

u3
τ

+
d2U+

dy+2
+

dT +

dy+
= 0 (3.3)

and

−2
δ

u2
τ

1

ρ

dP

dx
+

[
dU+

dy+

]y=2δ

y=0

= 0, (3.4)

respectively.
The inner Reynolds number is defined by Reτ = δuτ/ν = δ+, and a small parameter

by

ε2 = Re−1
τ . (3.5)

Using these symbols and eliminating dP/dx from (3.3) and (3.4), one obtains

−1

2
ε2

[
dU+

dy+

]y=2δ

y=0

+
d2U+

dy+2
+

dT +

dy+
= 0. (3.6)

Note that in all cases, the normalization has been chosen so that

dU+

dy+
(0) = 1. (3.7)

In the Poiseuille case, the shear stress at the upper wall is equal in magnitude but
of opposite sign as that at y+ = 0, so that from (3.7),[

dU+

dy+

]y=2δ

y=0

= −2,

and (3.6) becomes

ε2 +
d2U+

dy+2
+

dT +

dy+
= 0.
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In the Couette case, the shear stress at the upper wall is the same as that at the
lower wall, so that [

dU+

dy+

]y=2δ

y=0

= 0,

and (3.6) becomes

d2U+

dy+2
+

dT +

dy+
= 0.

The function U+ is odd with reference to the centreline, while the profile of T + is an
even function. The opposite is true in Poiseuille flow; none of these symmetries exist
in C-P flow.

The general case. When both Couette and Poiseuille effects are present, it will be
convenient to use the following symbol for the inner-normalized friction at the upper
wall:

τ+
u =

dU+

dy+

∣∣∣∣
y+=2δ+

, (3.8)

i.e. the ratio of shear forces at the two walls (it could be positive or negative). The
new momentum balance equation is

1

2
ε2(1 − τ+

u ) +
d2U+

dy+2
+

dT +

dy+
= 0. (3.9)

There are boundary conditions to be appended to (3.9):

U+(0) = 0,
dU+

dy+
(0) = 1, T +(0) = 0, (3.10)

and
dU+

dy+
(2/ε2) = τ+

u , T +(2/ε2) = 0, (3.11)

where it is noted that the upper wall location is at y+ = 2δ+ =2ε−2.
It is seen that ε and τ+

u are the only two independent parameters appearing in
(3.9), (3.10), and (3.11). It will be assumed that 0<ε � 1. The allowed range of τ+

u ,
according to (2.3), is

|τ+
u | � 1. (3.12)

The pure Couette and Poiseuille cases are recovered when τ+
u is at one of the two

ends of the allowed interval. All values in-between are possible, and each provides
(for a given small ε) its own U+ and T + profile.

There turns out to be a wealth of scaling patches for the solution U+, T +, due
to the smallness of ε. This aspect of the mean profiles will be examined in § 6. The
other parameter τ+

u is not of a singular perturbation type; its physical role is as a
measure of the relative magnitudes of the effect of the differential wall velocities,
versus the pressure gradient effect. Its mathematical role is mainly to determine how
the multiplicity of scaling patches are distributed across the channel.

4. Outer-normalized equations
The outer-normalized distance is defined by

η = ε2y+. (4.1)

Under the present definitions, the mean momentum equation for C-P flow takes the
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outer-normalized form,

0 =
1

2
(1 − τ+

u ) + ε2 d2U+

dη2
+

dT +

dη
. (4.2)

Note that in the pure Poiseuille case, the first term on the right of (4.2) equals 1,
under intermediate flow as defined before it equals 1

2
, and for pure Couette flow it

equals 0. Furthermore, examination of the stress gradient ratios S in figure 1 reveals
that in layer IV in the Poiseuille case, the second term is small, and thus the mean
momentum equation is satisfied by a balance between the pressure gradient and
Reynolds stress gradient. In C-P flow, however, when the Couette component is large
the first term in (4.2) will become small, and thus under such conditions the second
term cannot be neglected. Therefore, as pure Couette flow is approached (from the
Couette flow side of the intermediate profile), layer IV diminishes in extent and is
replaced by layer II. In this limit the entire mean momentum field is characterized by
a balance between the viscous and Reynolds stress gradients.

5. Couette–Poiseuille mesolayer structure
Beyond the traditional inner- and outer-scalings, the general features of the

present scaling theory were briefly discussed in § 2.2. Distinctive among these is the
mathematical description by which the inner and outer physical layers are connected.
Specifically, for flows with an increasingly significant Poiseuille component, the present
mathematical framework predicts the existence of an outer physical layer (IV) whose
dynamics are increasingly well-approximated by a balance between the Reynolds
stress gradient and the applied mean pressure gradient.† Under this condition, a third
physical layer within the flow emerges (the mesolayer, layer III), and it coincides with
a characteristic scaling patch. Across this layer the inner and outer layers are then
connected through the balance breaking and balance exchange process described by
Wei et al. (2005a).

It has been known for a long time (possibly beginning with Afzal 1982; see other
citations in Wei et al. 2005a , as well as Antonia et al. 1992 and Sreenivasan 1989) that
a special scaling for turbulent Poiseuille flow is appropriate in a region (it turns out
to be a scaling patch) encompassing where the Reynolds stress attains its maximum.
That region coincides with the mesolayer, and its length-scaling factor is the geometric
mean of those yielding the inner and outer length scalings. The existence of such a
region, and its identification as a scaling patch, was verified by means of a balance
exchange argument in Wei et al. (2005a) and Fife et al. (2005b).

In the case of turbulent Couette flow, there is still a scaling patch located where
the Reynolds stress has its maximum, but this time that maximum is at the centreline
(Fife et al. 2005a, b). The length scale in that patch coincides with the traditional
outer length scale (4.1), but the scaled form of the momentum balance in that patch
is not the traditional outer approximation. Rather, it is

d2U+

dη2
+

dT̂

dη
= 0,

where T̂ is the mesoscaled Reynolds stress given by (5.1) below. This preserves its

† Regarding this, note that for pure Couette flow the present theory asserts that there is no such
outer physical layer (e.g. Fife et al. 2005b), whereas the traditional theory asserts that an outer
layer, within which viscous effects are negligible, exists even for pure Couette flow (e.g. Libby 1996).
An outer-scaling region, however, does exist.
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meaning as a balance between viscous and turbulent forces. The patch also constitutes
the culminating scaling associated with the largest of a hierarchy of patches composing
the structure of the stress gradient balance layer.

In what follows, an analysis pertaining to the mesolayer in C-P flow is presented.
It will be assumed that the flow has an important Poiseuille component, in the sense
that 1 − τ+

u = O(1). The efficacy of this analysis is then tested against its capacity to
scale the Reynolds stress profiles over a range of C-P flow conditions.

5.1. The mesoscale

The inner and outer subdomains have y+ and η as characteristic distance variables.
The physical mesolayer, lying somewhere between the inner and outer domains, is
characterized as the place where all of the terms in the momentum balance have the
same nominal order of magnitude. In the graphs on the right side of figure 3, the
mesolayer corresponds to the region in part (a) of the graph (near the lower wall)
where the plotted ratio S transitions from near −1 through ±∞ to near 0. In the
cases considered here, there will generally be a second mesolayer near the upper wall
(in figure 3b) as well, where the reverse transition is made.

To reiterate, the mesolayer is defined here physically in terms of the specification of
which forces balance in that region. As it turns out, and we shall show, the mesolayer
also has a natural scaling, and therefore forms a scaling patch. The origin of the
mesoscaling patch is through a balance exchange mechanism described, e.g., in Wei
et al. (2005a). This patch, as shown in § 6, is only one of many such patches forming
a collection connecting the inner to the outer scales.

For now, the mathematical strategy is to seek a rescaling of (3.9) that appropriately
reflects this description of the mesolayer. This will be possible near the location (call
it y+

m ) where T + attains its maximum.
The rescaling will take the form

y+ = y+
m + α dŷ; T + = T +

m + γ T̂ (ŷ); (5.1)

U+ = U+
m + m(y+ − y+

m ) + λÛ (ŷ), (5.2)

where α, λ. and γ are scaling parameters, functions of ε to be determined, and
m =(dU+/dy+)(y+ = y+

m ), unknown at this point. All quantities with hats, together
with their derivatives, are O(1) inside the prospective scaling patch, defined say as
{|ŷ| � O(1)}; and the quantities with subscript m are the values of those variables at
the maximum point y+

m of T +. The parameter α can be thought of as a characteristic
length in that patch, λ is a characteristic increment in U+, and similarly for γ .

Theory would tell us that λ can be arbitrarily chosen, as long as γ and α are
chosen appropriately in terms of λ. Relevant to this, experimental evidence shown
in Wei et al. (2005a) reveals that the normalized velocity increment across layer III,
hence across the mesoscaling patch, is almost identically equal to 1, independent of
Reynolds number. Therefore λ will be set equal to 1 in the following. The implications
of other possible values of λ are best brought out in the context of the hierarchy of
scales in § 6, where the same ambiguity reappears. Further discussion on this issue is
deferred to that section, as is the discussion of the value of m.

Note that

Û (0) = 0, (5.3)
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and since T + has a maximum at y+ = y+
m , the analogous relation holds for T̂ :

T̂ (0) =
dT̂

dŷ
(0) = 0. (5.4)

With λ= 1, we pass now to the identification of α and γ . In the patch, by the
balance exchange argument elucidated in Wei et al. (2005a), all three terms of the
momentum balance equation

1

2
ε2(1 − τ+

u ) +
d2U+

dy+2
+

dT +

dy+
= 0 (5.5)

have to have the same order of magnitude. From (5.1) and (5.2),

d2U+

dy+2
=

1

α2

d2Û

dŷ2
;

dT +

dy+
=

γ

α

dT̂

dŷ
. (5.6)

As mentioned, a successful rescaling results in the normalized variables and their
derivatives, such as d2Û/dŷ2 and dT̂ /dŷ, remaining � O(1) over an O(1) variation in
the appropriately scaled layer thickness (flow subdomain or scaling patch; Fife et al.
2005a), which is being taken here to be {|ŷ| � 1}. By the requirement established
above, for the mesolayer this demands that the orders of magnitude 1/α2 and γ /α

must match the third term in (5.5), which will be renamed

ε2
t ≡ ε2(1 − τ+

u )/2. (5.7)

Recall that it is assumed that the Poiseuille component is important. This will be
taken to mean that 1 − τ+

u = O(1), so that εt =O(ε).
Thus one may choose

1

α2
=

γ

α
= ε2

t , (5.8)

which requires α and γ to be

α = ε−1
t γ =

1

α
= εt . (5.9)

Furthermore, from (5.1),

ŷ = εt (y
+ − y+

m ) and T̂ =
1

εt

(T + − T +
m ). (5.10)

Normalization of the mean momentum equation according to these variables results
in

0 = 1 +
d2Û

dŷ2
+

dT̂

dŷ
, (5.11)

and thus provides the desired parameter-free representation in which all scaled terms
are formally represented as being O(1). Later, the possible existence of a mesolayer
near the upper wall will be taken up.

The transformations given by (5.10) inherently characterize mean momentum field
behaviours with variations in the composite parameter εt .

The construction outlined here of the mesoscaling patch relied on the Reynolds
stress having a maximum, whose location becomes the seat of the corresponding
patch. In § 6, the same reasoning will be used to construct a scaling patch at the
maximum of each of a family of adjusted Reynolds stresses.
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Another analogue is noteworthy. The Reynolds stress attains a minimum at the
wall, and there is considerable similarity between the behaviour of the Reynolds stress
near that minimal point and its behaviour at the maximum. Despite the similarity,
the mesoscale argument cannot be taken over ‘as is’ at the wall to demonstrate the
existence of a scaling patch there with different scaling. A patch does exist, but its
demonstration requires a major reformulation of the problem. The details of this
wall-scaling patch construction and properties are given in the Appendix.

The information in this section will now be employed to describe properties of the
Reynolds stress function near its peak.

5.2. Peak Reynolds shear stress location and value

Several papers in the past have addressed the issue of determining the location y+
m of

the peak Reynolds stress in pure Poiseuille turbulent flow, as well as the maximum
value T +

m of the Reynolds shear stress. Theoretical approaches to determining the
orders of magnitude of these quantities in terms of ε have been given; the ones closest
in spirit to the present methods were in Wei et al. (2005a, 3.21) and Wei et al. (2005b).
Other references to previous work were given in those papers; note also Antonia
et al. (1992) and Panton (1997). In most cases, assumptions and methods were used
which rely on the existence and properties of an overlap layer for the Reynolds stress
profile and (in the case of Panton) an assumed typical explicit form for that profile in
the inner region.

Those previous analyses generally can be applied directly to the present analogous
situation for Poiseuille-like flows; there is little need to repeat the details. The results
are the estimates

y+
m = O

(
1

εt

)
(5.12)

and

1 − T +
m = O(εt ). (5.13)

As an alternative derivation of (5.12), it is noted below following (6.18) that the charac-
teristic length in a member of the hierarchy of patches, to be brought out in § 6 below,
is asymptotically proportional to its distance from the wall in inner units. In the case
of the mesoscale being considered now, that characteristic length, namely α in (5.9), is
ε−1
t , which should therefore be the location y+

m in (5.12). This validates that relation.

5.3. Mesoscaling of the Reynolds shear stress and mean velocity
for Poiseuille-like flows

Still assuming that the flow is Poiseuille-like rather than Couette-like, one notes that
the form of (5.11) is identical to that using mesoscaling for pure Poiseuille flow.
The Reynolds stress and mean velocity should therefore admit the same type of
mesoscaling as analytically derived in Wei et al. (2005b). To explore this, different
scalings of the Reynolds shear stress are shown in figure 4, and the same is done for
the mean velocity in figure 5.

Inner-scaling (a) and outer-scaling (b) are, of course, for both T + and U+ the
conventional ways of presenting the data. The mesoscaling in figure 4 is from (5.10),
and figure 4(c) supports, for the range of Reτ used, this new scaling for T + (but not
for U+) over an interior region of the flow that extends from inside the peak in T +

to a zone near y+ =Reτ = δ+. In terms of the mesoscaled variable ŷ, this upper limit
ranges from 10 to 25 for these data. It should be emphasized that the fact the T + can
be approximated this way does not mean that the mesoscaling patch itself extends
that far; see the discussion of scaling patches in the introduction.



On scaling turbulent Couette–Poiseuille flow 385

–0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a) (b)

(c) (d )

0 100 200 300 400 500 600 700

T + T +

y+

–1.0

–0.5

0

 0.5

1.0

0 0.5 1.0 1.5 2.0
η

Case WL1 (Kuroda et al.)
Case WL2 (Kuroda et al.)
Case WL3 (Kuroda et al.)
Reτ = 175 (Thurlow et al.)
Reτ = 255 (Thurlow et al.)
Reτ = 180 (Moser et al.)
Reτ = 395 (Moser et al.)
Reτ = 110 (Iwamoto et al.)
Reτ = 150 (Iwamoto et al.)
Reτ = 642 (Iwamoto et al.)

–25

–20

–15

–10

–5

0

5

–30

–25

–20

–15

–10

–5

0

–5 0 5 10 15 20 25

(T
+
 –

 T
m+

)/
ε t

(y+ – ym)εt

0 5 10 15 20 25 30

(T
+

 – 
1)

/ε
t

y+εt

Figure 4. Scaling of the Reynolds shear stress in turbulent Couette–Poiseuille flow. (a) Inner-
scaling: T + vs y+. (b) Outer-scaling: T + vs η. (c) Mesoscaling: T̂ vs ŷ. (d) Approximate
mesoscaling. The Couette–Poiseuille flow DNS data are from Kuroda et al. (1994).
They computed three cases of Poiseuille-type flows: WL1: Reτ = 148, τ+

u = −0.285; WL2:
Reτ = 152, τ+

u = −0.103; WL3: Reτ = 154, τ+
u = −0.013. The pure Poiseuille flow (τ+

u = −1)
data are from two sets of DNS by Moser, Kim & Mansour (1999) (Reτ = 180, 395, 590)
and Iwamoto et al. (2002) (Reτ = 100, 150, 300, 400, 650). Two more experimental profiles
by Thurlow & Klewicki (2000) are used in (b) and (d). The experimental data are for
Couette–Poiseuille flow, Reτ = 175, τ+

u = −0.47 and Reτ = 255, τ+
u = −0.68.

The mesoscaling in figure 5 is from (5.2), and figures 5(c) and 5(d) support this
new scaling for U+. In this, note has been taken (see the explanation following (6.20))
that the middle term on the right of (5.2) scales the same way as the last term, so
that those two terms may be combined into a single term with the properties of the
last term.

In this regard, a couple of other points are worth noting.
(a) In narrow regions near the walls, the mesoscaling should not hold, since these

are the patches where inner-scalings based upon the local wall shear stress are
expected to hold: see Fife et al. (2005a). The convincing merging of the profiles in
figure 4(a) directly supports this assertion in the vicinity of y+ =0. More generally,
Thurlow and Klewicki (2000) show that local wall shear stress scaling holds in the
immediate vicinity of the wall for both positive and negative wall motion. Similarly,
the mean velocity data of figure 5(a) convincingly merge to a single curve in the
region adjacent to the wall.

(b) As shown for the case of pure Poiseuille flow by previous authors, including
Wei et al. (2005a), dT̂ /dŷ is identically equal to dT +/dη. Thus, when referenced to
the ‘origin’ value, Tm at ym, it could be expected that the mesoscaling will provide a
good approximation for the Reynolds stress (but clearly not for the mean momentum)
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Figure 5. Scaling of the mean streamwise velocity in turbulent Couette–Poiseuille flow. (a)
Inner-scaling: U+ vs y+. (b) Traditional outer-scaling (velocity defect law): (Uc − U )/uτ vs η.
(c) Mesoscaling: (U − Um)/uτ vs ŷ. (d) Zoom in of the mesoscaling around the mesolayer. The
data sources are the same as figure 4.

all the way into any inertial outer layer (layer IV) that might exist. The profiles of
figure 4(c) reflect this prediction. In § 6 the existence of a continuum of scaling patches
connecting the mesoscaling to the outer-scaling patches will be shown. In the case of
the Reynolds stress, the mesoscaling also merges with the scaling in each intermediate
patch, resulting in the latter not being recognizable from plots such as those in
figure 4. The distinctions among the scalings in the hierarchy are best understood in
reference to the scaled variables, including Û , used in (6.12) and elsewhere in that
section, rather than T̂ alone.

Lastly, since y+
m and T +

m are generally not known beforehand, an approximate
mesoscaling may be constructed. This scaling is based upon the limiting behaviours
of y+

m and T +
m , and is given by (T + − 1)/εt versus y+εt . As shown in figure 4(d), this

scaling constitutes a very good approximation.
In summary, the derived mesoscaling, applied to both the Reynolds shear stress

and mean velocity, serves to merge the various data profiles to a single curve over the
range of distances from the wall predicted by the theory.

5.4. Scaling of the Reynolds stress for Couette-like flows

The left-hand plots in figure 3 include some cases of Poiseuille-like and some of
Couette-like flows. In all cases, the locations of the maxima of Reynolds stress can
be identified as where the function W = dT +/dy+ changes sign. For each of the
Poiseuille-like cases there are two such maxima, one near each of the walls. These
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W = β – εt
2

ym 
β

I

y+

W(y+)

Figure 6. Schematic diagram showing the role of the function W (y+) in determining the

relation between β and the location y
β
m of the corresponding scaling patch. The interval I

shown here is one of many choices of interval on which W is decreasing.

maxima are also the locations of mesoscaling patches, as described in § 5.3. Thus
Poiseuille-like flows have two mesoscaling patches, with an outer region somewhere
in-between them.

In the Couette-like cases, there is only one change of sign and it is located in the
outer region itself. The scaling of the Reynolds stress corresponds to that described
in Fife et al. (2005b).

6. The hierarchy of scaling patches
Continua of scaling patches, each patch with its own characteristic length, were

shown in Fife et al. (2005a, b) to exist in pure Couette and pure Poiseuille flows. To
extend that argument to the combined case, one looks for basic concepts and features
of the flow that are crucial to the existence of such hierarchies. The most important
such feature turns out to be the presence of local maxima or minima of the function

W (y+) =
dT +

dy+
(y+). (6.1)

The reasoning will now be explained in the case of a local maximum, leading to a
hierarchy covering an interval of y+-values adjacent to, and to the right of, the point
where the maximum is attained. Later, the argument will be shown to be extendible
to the case of a local maximum with hierarchy on the left, or of a local minimum.

6.1. Patch construction

If W has a local maximum at some point y+ = y+
0 , there will be intervals of y+-values,

located to the right of that point, on which W (y+) is a decreasing function. Call such
an interval I (see figure 6). Rewrite (5.5) in the form

W (y+) =
dT +

dy+
= −ε2

t − d2U+

dy+2
, (6.2)
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and assume that

d2U+

dy+2
� 0 on I. (6.3)

Then, according to (6.2),

W (y+) � −ε2
t on I. (6.4)

In other words, for each location y+ inside the interval I , there is a number β � 0
such that

W (y+) = −ε2
t + β. (6.5)

This gives a correspondence between the parameter β and points y+ in I , as shown
in figure 6. To keep things straight, the point corresponding to a given β will be
called yβ

m (the reason for this notation will be apparent shortly). It will be shown that
a scaling patch exists at each such point yβ

m, and its characteristic length (measured
in inner units) is β−1/2. This is no surprise, because according to (6.2) and (6.5),
(d2U+/dy+2)(yβ

m) = −β , and dimensional considerations suggest the stated conclusion.
To proceed, define the artificial ‘adjusted Reynolds stress’ by

T β(y+) = T +(y+) +
(
ε2
t − β

)
y+. (6.6)

Examples of adjusted Reynolds stresses are shown in figure 7. Note that each has a
maximum when β � 0.001, and the location of that maximum moves toward the wall
as β increases. It will be shown that the location is in fact just yβ

m.
From (6.6),

dT β

dy+
= W (y+) +

(
ε2
t − β

)
. (6.7)

By this and (6.5), the derivative on the left vanishes at y+ = yβ
m and is a decreasing

function of y+ near that point, implying that T β has a local maximum at y+ = yβ
m.

This is the meaning of the subscript ‘m’. Call the value of T β at that maximum T β
m .

The correct scaling near yβ
m can again be obtained by a balance exchange argument,

which will now be detailed.
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By (6.6) and (6.2),

dT β

dy+
= −β − d2U+

dy+2
. (6.8)

As y+ approaches yβ
m from below, the term on the left of (6.8) approaches 0, so

that there will be a point where its value is the small number β (say); at that point,
d2U+/dy+2 = −2β and all three terms in (6.8) have the same order of magnitude. This
suggests there should be a rescaling possible such that the three terms are all formally
O(1) quantities. That indeed turns out to be the case. We seek scaling factors α, γ. λ,
all of them dependent on β , such that the transformation

y+ = yβ
m + αŷ, T β = T β

m + γ T̂ β, U+ = U+
m + m(y+ − y+

m ) + λÛ , (6.9)

where m =(dU+/dy+)(y+ = y+
m ) and ŷ, T̂ , Û are O(1) quantities, will produce the

desired property of all terms in (6.8) having equal weight. The derivatives occurring
in that equation annihilate all linear and constant terms in the expansions for T β and
U+ in (6.9), so m cannot be determined this way. It will be found by another route,
as explained below.

Applying the transformation (6.9) to (6.8) and requiring equal weight produces two
equations,

γ

α
= β =

λ

α2
, (6.10)

for the three unknowns α, γ, λ. This indeterminacy leads to a family of solutions
parametrized by λ. All these parameters depend on β , and there is no contradiction
in taking them to be powers of β . Thus the independent parameter λ will be replaced
by σ , where λ= β−σ (since we deal with orders of magnitude, there is no need for a
constant coefficient in this expression). In all, the family of rescalings are

y+ = yβ
m + β−(σ+1)/2ŷ, T β = T β

m + β (−σ+1)/2T̂ β, U+ = U+
m + m(y+ − y+

m ) + β−σ Û ,

(6.11)

This leads to a parameterless equation involving only the scaled quantities T̂ β, Û , ŷ:

d2Û

dŷ2
+

dT̂ β

dŷ
+ 1 = 0. (6.12)

It should be emphasized that the rescaling given here will produce new functions with
‘hats’ which may still depend on β , although they have orders of magnitude unity
within that particular scaling patch, where |ŷ| � O(1). This is in accordance with usual
practice in asymptotic analysis.

The fact that no parameter appears in (6.12) is evidence that the given β-dependent
scalings, producing ŷ, Û , and T̂ β , are candidates for the correct scalings valid near the
point yβ

m. But this evidence is independently supported by the fact that the individual
terms in (6.12) are known by independent means to equal to −1, 0, and 1, respectively,
at the point ŷ = 0, i.e. y+ = yβ

m, which is taken to be the centre of this scaling patch.
Similar known values are taken near that point, as shown in the above balance
exchange argument. The important observation is that these values of the individual
terms are parameter-independent, �O(1), and some are =O(1).

There appears to be no theoretical selection mechanism, at this point, to determine
the correct value of σ , hence the correct scaling operative in that patch. It will be
shown below that the exponent σ , if assumed independent of β (although λ is not,
of course), controls the approximate rate of growth of U+(y+) in any interval where
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the described scaling construction is performed. It will be shown below that the case
σ = 0 corresponds to logarithmic growth, and the other values to power law growth
or decay.

It is remarkable that the rescaled momentum balance (6.12) and key values of
rescaled quantities are formally independent, not only of β , but also of σ , despite the
fact that they reign in different candidate patches, and presumably only one value of
σ represents an actual patch.

In previous papers, notably Wei et al. (2005a), Fife et al. (2005a), and Fife et al.
(2005b) the above balance exchange construction and rescaling was introduced and
pursued. However, in those papers the parameter σ was essentially arbitrarily taken
to be 0, and therefore in the latter two cited papers, in which the hierarchy was
developed, only logarithmic-like growth was considered.

6.2. The patch at the centreline

The coefficient β−(σ+1)/2 ≡ �(β) of ŷ in (6.11) is the characteristic length (in order of
magnitude) of the patch with that value of β . It increases when β decreases, but can
grow no larger than the half-width δ+ = ε−2 of the channel, which is the maximal
length scale allowed. That maximal value of � is therefore taken at the value of β such
that �(β) = ε−2, i.e. β = ε4/(1+σ ). This length scale will coincide with the traditional
length scale η, so that dy+ = ε−2dη = ε−2dŷ, where ŷ here is the scaled distance in
(6.9) for that value of β . The centre yβ

m of the patch, as indicated in (6.9), is a distance
O(1) in η from the origin {η = 0} of the outer coordinate, so up to order of magnitude
we may identify ŷ = η and write functions of ŷ as functions of η. It will be shown
(see (6.21)) that the right-hand equation in (6.11) can be written

U+ = U+
m + β−σ Ũ (ŷ), (6.13)

with Ũ (ŷ) = O(1).
If σ =0, which seems to be the most likely case, this provides the defect law in the

outer region. To see this, rewrite (6.13) in terms of the variable η, using the notation
η = ηm as the location where U+ = U+(ηm) = U+

m . Doing this gives, for some η∗ = O(1),

U+(1) = U+(ηm) + Ũ (η∗), (6.14)

and therefore, from (6.13),

U+ = U+(1) − U ∗(1 − η) (6.15)

for some function U ∗(1 − η) = O(1) with U ∗(0) = 0. The traditional defect law is
equivalent to (6.15).

Since the use of η as scaled distance in the outer region is now justified, we
have the validity of the outer equation (4.2) with the higher-order term neglected:
dT +/dη = − 1

2
(1 − τ+

u ), with boundary condition T +(1) = 0.
To obtain the dominant expression for U+ in the core region (still in the case σ = 0),

one would need the function U ∗ in (6.15). That function is not known; however, the
functions U ∗ (6.15) and T̂ β = ε4

(6.11) are related through (6.12), which is transformed
to

d2U ∗

dη2
+

dT̂ β=ε4

dη
+ 1 = 0. (6.16)

Note that this equation satisfies the notion of a scaling patch in that it is both
parameter-free and valid over a domain in which η = O(1).

An analogous detailed examination of the wall region is given in the appendix.
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6.3. Locations of the patches

The analysis will now be continued. To this point, use has merely been made of an
interval I of monotonicity of W (y+); the results, namely that scaling with characteristic
length β−(σ+1)/2 is proper in a patch near where W =β − ε2

t , i.e. near where y+ = yβ
m,

leads to the further question of functional dependence between yβ
m and β . This

information, then, would provide the proper scaling at any given point in I . Such
information depends on knowledge of some salient features of the function W .

The needed information can be found, in order of magnitude, by the method shown
in Fife et al. (2005b) and Fife et al. (2005a). That method consists in (1) using the
fact that the derivative

A(β) ≡ − d2T̂

dŷ2

∣∣∣∣
y+=y

β
m

= O(1)

(since T̂ and ŷ are the properly scaled variables in that patch–in fact arguments based
on the lack of β dependence in (6.12) and the values of the terms at y+ = yβ

m can be
given to support the assumption that A is approximately β-independent in certain
intervals); and (2) differentiating the identity

dT̂

dŷ

∣∣∣∣
y+=y

β
m

= 0 (6.17)

with respect to β and expressing the result in terms of A(β).
For example, one obtains

dyβ
m

dβ
= −A−1β−(3+σ )/2. (6.18)

Since it can be assumed that A= O(1) and is positive, it is bounded above and below
by positive constants independent of β . Applying such bounds to the factor A−1 in
(6.18) and integrating the resulting inequalities provides the result that the location yβ

m

of a scaling patch is asymptotically proportional to the characteristic length β−(σ+1)/2

in that patch. That gives an approximate (asymptotically valid for large yβ
m in this

case) relation between β and yβ
m. One then recalls the fact that β is also, by (6.5),

related to dT +/dy+ =β − ε2
t evaluated at the location of that patch. Integrating this

provides an order of magnitude expression as follows for T +(y+). The symbol C will
denote several different unknown constants which are independent of β and y+, and
the symbol ≈ means equality in order of magnitude only:

T +(y+) ≈ − CA−2/(σ+1)(y+ − C)−(1−σ )/(1+σ ) − ε2
t y

+ + C, (6.19)

Information on the profile U+(y+) can now be found by integrating (6.19):

dU+

dy+
+ T + + ε2

t y
+ = 1.

When this is combined with (6.19), the terms in ε2
t y

+ cancel. With one final integration,
the result is:

U+ ≈
{

CA−2/(1+σ )(y+ − C)2σ/(σ+1) + C, σ > 0,

CA−2 ln (y+ − C) + C, σ = 0.
(6.20)

Along the way, one may identify the coefficient m in (6.11) with the derivative of
U+ in (6.20). One verifies that the slope m =O(β (1−σ )/2). This implies that the linear
part of the expression for U+ in (6.9) enjoys the same natural scaling as does the



392 T. Wei, P. Fife and J. Klewicki

nonlinear part. The two parts may be combined and that expression written

U+ = U+
m + β−σ Ũ (ŷ), (6.21)

where the function Ũ = O(1).
This way, calculations based on the O(1) nature of A can be used to obtain

qualitative features of the profiles of T + and U+.
The expressions (6.20) indicate that, asymptotically for large y+, the rate of growth

of U+(y+) depends on σ , and it is logarithmic for σ = 0. That function decreases
when σ < 0, so that case can be excluded. The case σ =0 appears to provide the least
positive growth rate for U+, resulting in the flattest profile in the core region.

All this was for a given interval I . To maximize the results, one would seek an
interval which is as large as possible, and this leads to consideration of the global
qualitative nature of the function W . That is the next topic to be examined.

7. Parameter-induced transitions between Couette and Poiseuille flows
Figure 3 depicts the transition from Poiseuille (top) to Couette flow as τ+

u passes
from −1 to 1. The objective in this section will be to examine the operative
mechanisms for this transition, particularly in view of the scale hierarchies brought out
in § 6.

7.1. Global properties of W

It turns out that when ε � 1, the function W takes on one of the three possible shapes
described here.
A. A peak occurs near each of the two walls, with a core region, much larger than

the wall regions, in-between (see figure 3a, the top two cases). The pure Poiseuille
profile is prototypical for this case.

B. A peak is near the lower (stationary) wall, with a smooth approach to the value
0 as the opposite wall is approached (see the middle case in that same figure).

C. A peak is near the lower wall and an antipeak (negative minimum or valley) near
the upper wall (see the bottom two cases in that same figure). The pure Couette
profile is prototypical for this case.

Consider now the evolution of the function W as the parameter τ+
u passes continuously

from −1 (pure Poiseuille case) to 1 (pure Couette). The changes are seen in graphs
of figure 3(a), passing from top to bottom. As τ+

u increases from the value −1, the
peak near the upper wall becomes smaller. The value of W in the core region, which
is negative, increases slightly so as to maintain the required constraint

∫ 2

0

W (η) dη = 0. (7.1)

Eventually, for some intermediate value τ+
u = τ0, the upper peak vanishes and type B

is reached. After that, a negative peak appears and grows until type C appears with
both the positive and the negative peaks having the same amplitude (bottom frame).
This is pure Couette flow.

It will now be argued that τ0 is (at least approximately) 0. If τ0 > 0, say, and
τ0 = O(1), then since τ0 is the ratio of inner length scales in the upper and lower
wall regions, the upper inner scale is comparable to the lower one, and when
viewed with the lower scaled variable y+ (as in figure 3), the typical wall structure,
including an O(1) peak in the Reynolds stress gradient W , will be evident near



On scaling turbulent Couette–Poiseuille flow 393

the upper wall. This implies case A. Similarly, if τ+
u < 0, |τ+

u | = O(1), we are in
case C. Therefore, in case B, necessarily τ+

u = 0, at least approximately. Since ε

is the only other parameter in the problem, it specifically follows that τ0 = o(1)
as ε → 0.

7.2. Generally there exist two hierarchies

Consider now the hierarchy analysis for type A (peaks near each of the two walls).
There will be an interval I , as explained above, on which dT +/dy+ = W is a decreasing
function, extending from near the peak near the lower wall to the place in the core
region where W is minimal. According to the above, each point y+ in I is the location
of a scaling patch with characteristic length β−1/2, where β − ε2

t is the value of W for
that particular y+, i.e. β − ε2

t = W (yβ
m).

Symmetry suggests that something similar happens in the corresponding interval
I ′ extending from near the location where W is minimal to the peak near the upper
wall. To do this in a systematic way, use the variable ỹ+ = 2ε−2 − y+, measuring
distance away from the upper wall, and define T̃ (ỹ+) = − T (2ε−2 − ỹ+). Then
dT +/dy+ =dT̃ /dỹ+. What this means is that in the interval I ′, where W = dT +/dy+

is increasing as a function of y+, W̃ = dT̃ /dỹ+ will be a decreasing function of ỹ+.
The above analysis can therefore be applied to W̃ on I ′.

As a result, adjusted Reynolds stresses

T̃ β = T̃ + (ε2
t − β)ỹ+ (7.2)

can be defined and used as before. Each point in the interval I ′ is the location of a
scaling patch with characteristic length β−1/2, where β is the value (dT β/dy+)(y+)−ε2

t

for that particular point, now in the interval I ′ leading to the vicinity of the peak
near the upper wall.

Two hierarchies are thereby obtained. One leads from the peak near the lower wall,
where the characteristic length is least, to the centre region of the channel, where it is
maximal. The maximal characteristic length is O(ε−2) because that patch accounts for
an O(1) fraction of the entire width of the channel, which is 2ε−2. The other hierarchy
comes from the opposite side. In the case of pure Poiseuille flow, the function W is
exactly symmetric (even) with respect to the centreline, and the two hierarchies are
mirror images of each other with respect to the place where W takes its minimum. But
when Type A occurs without exact symmetry, the two hierarchies are only qualitative
images of each other, and the location of the minimum of W is not exactly at the
centreline.

Consider next type C, when the peak near the upper wall is inverted to become a val-
ley. The change in the reasoning now simply involves redefining T̃ (ỹ+) = T +(2ε−2−ỹ+),
and T̃ β = T̃ + + (ε2

t − β)ỹ (formally the same as (7.2)). This gives a second hierarchy
with properties similar to the first.

Finally, consider the in-between case of type B. There is only one peak, namely the
one near the lower wall, and the interval I extends all the way from there to the upper
wall. There is only one hierarchy, with that same domain, and the patch with maximal
characteristic length is the one adjacent to the upper wall. It may seem strange that
there is no ‘wall layer’ at the upper wall, until one considers that type B occurs only
under a very special condition; more or less, that condition says that the differential
motion of the wall exactly matches the momentum input of the pressure gradient,
and thus effectively removes any pressure-driven stress gradient balance layer near
the upper wall.
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7.3. Other features of the transition from Poiseuille to Couette

Other characteristic features of the transition from Poiseuille to Couette flow relate
to the behaviour of W = dT +/dy+ with changes in the parameter τ+

u . Specifically,
for τ+

u = −1 the condition (7.1) is separately satisfied on each half of the channel.
(Recall that for this case the outer flow approximation to (4.2) is dT +/dη = −1.) As
τ+
u increases from the value −1, (7.1) is satisfied by a W function that retains its

positive peak, as well as a diminished one near η = 2δ+, but has a negative portion
that simultaneously decreases in amplitude while covering a greater portion of the
channel. For τ+

u = 0, W is negative over the entire region 1 <η < 2, and rapidly rises
to zero right at η = 2. By noting that for this case the outer flow approximation to
(4.2) is dT +/dη = − 1/2, one can surmise that, except in a small sublayer near η =2,
the entire channel is analogous to the region 0 <η < 1 in pure Poiseuille flow. For
further increases in τ+

u the flow becomes Couette-like and a negative peak in W forms
near the upper wall. The function W will then have a single zero, which remains in
0 <η < 1. Coincident with this, (7.1) is satisfied by there being a diminished magnitude
of the negative W plateau in the central core and a migration of its zero crossing
toward η =1. This process culminates (pure Couette flow) with a W function that
crosses zero at η =1 and that has very small amplitudes except near the upper and
low walls respectively.

As discussed above, there generally exist two hierarchies in the channel. Based
upon the behaviours of the mean vorticity distribution, however, one may surmise
that these hierarchies can be physically distinct, depending on whether the flow is
of the Poiseuille or Couette type. In connection with this, it is important to note
that Poiseuille-type flows are composed of two adjacent layers of opposing sign mean
vorticity, while Couette-type flows comprise one single-signed layer of mean vorticity.
Thus, increasing the Couette component (on the Poiseuille side of τ+

u = 0) serves
to destroy the hierarchy associated with the layer of opposing sign mean vorticity
in the region η > 1. Furthermore, once on the Couette side of τ+

u = 0, continuing
evolution toward pure Couette flow generates a scale hierarchy in the region η > 1
that is associated with the negative peak in W , and that is characterized by a mean
vorticity field that has the same sign as that in the region η < 1. Of course, this process
culminates when the entire flow is composed of a stress gradient balance layer. That
is, the mean dynamics in pure Couette flow are characterized by a balance between
the viscous and Reynolds stress gradients everywhere, and thus the ratio of these two
terms is −1. In the region η < 1, this evolution toward a ratio S = −1 everywhere
occurs by the outward migration of a mesolayer structure as depicted in figure 1.
In the region η > 1, a similar process occurs, except in this case the −1 condition
is approached via a broadening plateau of negative ratio that emerges and spreads
outward from near the upper wall with increasing τ+

u . (Recall that for η > 1, S ≈ 0
under the condition τ+

u = 0.) The limiting condition (pure Couette flow) is realized
when the inertial layers associated with these two hierarchies is diminished to a zone
of zero width at the channel centreline.

Finally, a word of explanation is appropriate regarding the schematic diagram
of S (second panel from the bottom, figure 3b). Assume the parameter values
τ+
u = 0.2, Reτ = 150. Dividing (5.5) by W , one obtains the following expression:

S = −1−c/W , where c = 0.003. Since W < −c in a small interval near the upper wall,
the ratio S is also negative, attaining a negative minimum, in that interval, as shown.
This is the beginning of the negative plateau broadening process described above. As
τ+
u further increases to 1, c decreases to 0 and S attains its uniform state of −1.
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8. Discussion
The method of seeking scaling patches in the context of the unintegrated averaged

momentum balance equation was introduced in previous papers by the present authors
and P. McMurtry. It is shown here that the analysis of C-P flows also naturally fits
within this overarching framework, and thus the present effort provides a detailed
picture of how individual Couette and Poiseuille components comprise combined C-P
flows. Similarly, since Couette and Poiseuille are subsets of C-P flow, the results in
this paper automatically encompass the mean flow (U+ and T +) scaling behaviours
of the two pure flows individually. In fact some perspectives and results in the present
paper are new, even when confined to the context of the pure flows.

These C-P flows can be formulated in terms of two parameters: a large Reynolds
number Reτ and a parameter τ+

u designating the ratio of shear stresses at the upper
and lower walls. As this ratio passes from −1 to 1, the character of the flow changes
from pure Poiseuille to pure Couette. During this transition, the principal layer
structure of the flow, as revealed for the Poiseuille case in Wei et al. (2005a), changes
also: at various points, the number of layers (not scaling patches) is reduced from
four to three and then to one, finally reaching the Couette state in which there is only
a single layer, the stress gradient balance layer.

Further details about the flow profiles at these transition points, as well as the
critical values of the parameters, require additional study. In particular, such an effort
would benefit from high quality data sets spanning a greater range of parameters.

Continua (hierarchies) of length scales described in terms of scaling patches were
shown in previous work to be core phenomena in turbulent channel flows, and that
continues to be the case in the C-P flow scenarios. The scaling structure, including the
distribution of patches, is most clearly described in reference to the properties of the
function W (y+) ≡ (dT +/dy+)(y+). Qualitative changes in the function W induced by
changes in τ+

u reveal, for example, the mechanism operative in the transition between
pure Poiseuille and Couette flows.

Appendix. The inner-scaling patch at the wall
The construction of the mesoscaling patch given in § 5.1 has, as a primary ingredient,

the fact that as the peak in Reynolds stress is approached, a region must appear in
which all three terms in the mean momentum balance equation, (5.5), will have the
same order of magnitude. This is simply because the gradient (dT +/dy+) approaches
0. There will, of course, be a smaller region encompassing the peak in which the last
term on the left of (5.5) has smaller order of magnitude than the others, because it
vanishes at the peak.

A similar phenomenon happens when y+ → 0, since that same gradient is zero
at the wall (y+ = 0) and positive for small values of y+ > 0. The same conclusion
may therefore be deduced: in a small region near the wall, all three terms in (5.5)
will have the same order of magnitude. But the argument in § 5.1 can only partially
be continued beyond this stage to produce a patch with different scaling; in fact it
is well known (see also the reason given below) that the characteristic length scale
arbitrarily near the wall remains the inner scale. The reason the argument is no
longer completely valid will now be explained. In addition, the correctly scaled mean
momentum balance very near the wall will be derived.

There have been many analytical, empirical, and computational studies of the
properties of the near-wall region; we mention only Cenedese, Romano & Antonia
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(1998), as our results fit particularly well with theirs. Our purpose here is to show
that a scaling patch exists there, whose derivation and description fits within the
framework of the methodology developed here and in our previous papers.

At the wall, additional constraints are imposed on the functions U+ and T +,
besides the basic differential equation (5.5). First of all, the very definition of inner
scaling requires an automatic boundary condition dU+/dy+(0) = 1. The inner scaling
was chosen just so that condition holds. Secondly, the no-slip condition requires the
boundary conditions

U+(0) = T +(0) =
dT +

dy+
(0) =

d2T +

dy+2
(0) = 0.

The first requirement is simply a result of our choice of normalized variables y+

and U+, and is not a statement of any physical constraint. The other boundary
conditions result from a physical effect located at the wall. They have no analogue at
the mesoscaling patch, and constitute the basic reason that the present construction
is different from the mesoscale construction.

If one proceeds in the same vein as before on the basis of (5.1) and (5.2), the effect
of the first boundary condition (dU+/dy+)(0) = 1 is that the length scale in that patch
is given by α =1. This means that ŷ = y+: the length scale in that patch is the same as
that with the original inner-normalized scaling. This is of course almost a tautology.

But then the rest of the argument, following (5.5), in which α and γ are determined,
can no longer be carried out as it stands, since α has already been determined.
However, one can proceed after some reformulation of the problem.

At this point, the first substantial difference in method emerges between the
derivation of the mesoscale patch and the present argument for what we shall
call the wall patch. As mentioned, it is allied with the physical no-slip constraint. In
both cases, we look for scaled solutions of (5.5) in a neighbourhood of a maximum or
minimum of T +. The first term, ε2

t , in that equation is a forcing term, which derives
from the imposed pressure gradient.

In both the mesoscale case and the present wall case, a scaling, namely a choice of
α, γ, λ in (5.1), (5.2), is sought which will render the three terms of (5.5) the same
formal order of magnitude. A unique choice is only possible if one of these three
factors is specified by other means. In the mesoscale case, empirical data having to
do with the velocity increment across the patch, and also the rate of growth of U+

in the hierarchy, is used to select the value λ=1, while leaving open the additional
possibility of other choices leading to different growth rates. This serves to determine
the other two factors. In the wall patch, where this argument is not applicable, the
definition of the inner scaling requires α = 1, and the equality criterion now can be
used to determine γ and λ. Namely, evaluating the three terms of (2.2) under the
transformation (5.1), (5.2) with α = 1 tells us that γ = λ= ε2

t . In neither case does this
provide the value of m, because the derivatives in (5.5) annihilate the linear term.
However, the value of m was obtained by other means: through use of (6.19) and the
connection T has with the slope, in the case of patches embedded in the hierarchy,
and by means of the boundary condition giving the slope at the wall, in the present
case.

The scaled version of (5.5) in that patch is

1 +
d2Û

dy+2
+

dT̂

dy+
= 0. (A 1)
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The individual terms of this equation are known only at y+ = 0; but it provides a
linear relation between the two derivatives. This equation is the analogue of (5.11),
and is in the form of a balance of three rescaled forces.

In short, there is a scaling patch near the wall, no doubt including the traditional
viscous sublayer, in which the inner length scale is correct, but the deviations of the
functions U+ and T + from their linear parts depend on Reτ like ε2

t ≈ (Reτ )
−1.

Finally, as y+ enters the patch from above, there is a balance exchange from layer II,
where the viscous and turbulent forces balance, to layer I, where the pressure gradient
balances the viscous plus turbulence force.

The location of this exchange, and in fact the size of layer I, is O(1) in wall units,
because that is the length scale for the parameterless (A 1).

In terms of the traditional buffer and logarithmic layer, we surmise that they lie
outside layer I, which can be identified as the viscous sublayer (although at its outer
edge the viscous and turbulent forces are equal in order of magnitude). Outside that
layer is approximately where the hierarchy begins (say y+ ≈ 7), which is also where the
traditionally defined buffer layer begins. The logarithmic mean profile approximation
associated with the hierarchy, however, does not become valid until distances from the
beginning of the hierarchy are sufficient for A in (6.18) to be approximately constant.

The dependence of U+ and T + in layer I on the parameter τ+
u is seen in the scaling

there of the nonlinear parts. The factor is ε2
t , which is defined (5.7) in terms of that

parameter.
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